

Public Informational Meeting Improvements to Bashan Lake Dam DEEP Dam No. 4113 East Haddam, Connecticut

June 27, 2013
WMC Consulting Engineers, Newington, CT
East Haddam Grange Hall

Bashan Lake Dam

Project Location

DEEP Responsibilities

- Maintain State-owned dams (eg, Bashan) in a safe condition
- Ensure that all dam owners (both State and private)
 maintain their dams in a safe condition

Key Personnel

DEEP, Inland Water Resources Division

Cheryl Chase, Director
Jennifer Perry, Supervising Environmental Analyst

Dan Biron, Senior Environmental Analyst

WMC Consulting Engineers

Steve McDonnell, Vice President

Dam History

- A smaller natural lake probably existed prior to the construction of the original dam
- First dam originally constructed circa 1734 to provide power for saw and grist mill operations
- Present dam constructed around 1900, raising lake levels
 ±16 feet
- Around 1939 upstream stone masonry walls covered with shotcrete (Gunite) to reduce seepage through dam. Photos show cofferdam between two small islands located at mouth of northerly cove.

Dam History

- Around 1966 dam ownership transferred from Moodus Reservoir Company to State of Connecticut
- June 1982 flood overtopped dam, causing some damage
- 1983 State repaired dam. Lake levels down ±16 feet during repairs.
- March 2010 flood overtopped dam, no damages

Proposed Major Repair Components

Replace existing gate structure

Replace Gate Chamber

Replace Gate Chamber

Existing Gate Chamber (1983)

New Moodus Reservoir Gate Chamber

Proposed Major Repair Components

- Replace existing gate structure
- Raise dam embankments one foot to provide one foot of overtopping freeboard for the 100 year design flood

Raise Embankments One Foot

Raise Embankments One Foot

Dam Overtopping (March 2010)

Proposed Major Repair Components

- Replace existing gate structure
- Raise dam embankments one foot to provide one foot of overtopping freeboard for the 100 year design flood
- Install new full-height concrete cut-off wall along upstream right embankment to correct repetitive concrete deterioration

Spalling Concrete

Proposed Major Repair Components

- Replace existing gate structure
- Raise dam embankments one foot to provide one foot of overtopping freeboard for the 100 year design flood
- Install new full-height concrete cut-off wall along upstream right embankment to correct repetitive concrete deterioration
- Reconstruct spillway cut-off wall for existing seepage

Reconstruct Spillway Cut-Off Wall

Reconstruct Spillway Cut-Off Wall

Downstream Spillway Face

Existing Spillway Seepage

Proposed Major Repair Components

- Replace existing gate structure
- Raise dam embankments one foot to provide one foot of overtopping freeboard for the 100 year design flood
- Install new full-height concrete cut-off wall along upstream right embankment to correct repetitive concrete deterioration
- Reconstruct spillway cut-off wall for existing seepage
- Construct new concrete buttress to reinforce downstream stone masonry wall

New Downstream Concrete Buttress

New Downstream Concrete Buttress

New Downstream Concrete Buttress

New Downstream Concrete Buttress

Proposed Major Repair Components

- Replace existing gate structure
- Raise dam embankments one foot to provide one foot of overtopping freeboard for the 100 year design flood
- Install new full-height concrete cut-off wall along upstream right embankment to correct repetitive concrete deterioration
- Reconstruct spillway cut-off wall for existing seepage
- Construct new concrete buttress to reinforce downstream stone masonry wall
- Install new prefabricated steel access bridge over spillway

New Maintenance Access Bridge

New Maintenance Access Bridge

Typical Maintenance Access Bridge

Water Handling Options

Option A- Maintain full lake level

Option B- Approximate 5 foot lake drawdown

Option C- Approximate 13 foot lake drawdown

Option D- Approximate 16 foot lake drawdown

Option A Water Handling

Option A- Maintain full lake level

190 foot long, up to 25 foot high cofferdam just upstream of dam

Option A Cofferdam Location

Connecticut Department of Energy and Environmental Protection

Option A Impacts

Option A- Maintain full lake level

190 foot long, up to 25 foot high cofferdam just upstream of dam

Impacts

- Recreation- Minimal impacts
- Aquatic Vegetation- No positive/negative impacts
- Fisheries- Minimal impacts
- Abutters- Minimal impacts
- Cost- ±\$750,000 (most expensive option)
- Lake Refilling- 0 months

Option B Water Handlings

Option B- 5 foot lake drawdown

120 foot long, 10 foot high cofferdam between two islands located at mouth of northerly cove

Option B Cofferdam Location

Connecticut Department of Energy and Environmental Protection

Option B Impacts

Option B- 5 foot lake drawdown

120 foot long, 10 foot high cofferdam between two islands located at mouth of northerly cove

Impacts

- Recreation- ±1 foot down first summer
- Aquatic Vegetation- Potentially more growth
- Fisheries- Reduced impacts to Bridle Shiner
- Abutters- Primarily limited to first spring
- Cost- ±\$150,000 (second most expensive option)
- Lake Refilling- ±10 months

Option C Water Handling

Option C- 13 foot lake drawdown

Install stop logs in existing cofferdam located between two islands at mouth of northerly cove

Existing Cofferdam (1983 Repairs)

Option C Impacts

Option C- 13 foot lake drawdown

Install stop logs in existing cofferdam located between two islands at mouth of northerly cove

Impacts

- Recreation- ±4ft down 1st summer, ±½ft down 2nd summer
- Aquatic Vegetation- Potentially reduced growth
- Fisheries- Possible notable impacts to Bridle Shiner
- Abutters- Notable first summer
- Cost- ±\$5,000 (minimal project cost)
- Lake Refilling- ±22 months

Option D Water Handling

Option D- 16 foot lake drawdown

Utilize existing cofferdam located between two islands, without stop logs

±16 Foot Drawdown (1983)

±16 Foot Drawdown (1983)

Option D Impacts

Option D- 16 foot lake drawdown

Utilize existing cofferdam located between two islands, without stop logs

Impacts

- Recreation- ±5ft down 1st summer, ±1½ft down 2nd summer
- Aquatic Vegetation Potentially reduced growth
- Fisheries- Possible notable impacts to Bridle Shiner
- Abutters- Notable first summer, minor second summer
- Cost- ±\$0 (minimal project cost)
- Lake Refilling- ±25 months

Option A- Full Lake Level

Option B- 5 Foot Lake Drawdown

Option C- 13 Foot Lake Drawdown

Option D- 16 Foot Lake Drawdown

Water Handling Summary

	Water Handling Options			
	Α	В	С	D
Impacts	O ft	-5 ft	-13 ft	-16 ft
Recreation	++	+	1	
Vegetation	0		+	++
Fisheries	++	+	1	
Abutters	++	+	1	
Cost	-	-	++	++
Lake Refilling	++	+	_	

- ++ Notable Positive Impact
- -- Notable Negative Impact

+ Positive Impact

- Negative Impact
- O Neither Positive nor Negative Impact

Project Schedule

- Start Lake Drawdown- Day after Labor Day, 2014
- Start Lake Refilling- No later than February 1, 2015
- Total Estimated Construction Duration- 6 Months
- <u>Construction Estimate</u>- \$1.2 million (excluding water handling)

DEEP Contact

Mr. Dan Biron Senior Environmental Analyst Inland Water Resources Division Department of Energy and Environmental Protection Hartford, CT (860) 424-3892 dan.biron@ct.gov

WMC Contact

Mr. Steve McDonnell
Vice President
WMC Consulting Engineers
Newington, CT
(860) 667-9624
smcdonnell@wmcengineers.com

Questions?

